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Various recently introduced multicenter bond indices were reviewed and their interrelations discussed. In
addition to this analysis a simple three-center three-orbital model of three-center bonding was proposed and
applied to several molecules with three-center bonds. The applicability of this model was tested by comparing
with semiempirically andab-initio calculated bond indices. It was shown that the simple model correctly
describes the phenomenon of three-center bonding. Another interesting and useful application of this model
concerns the interpretation of the indices as an indicator of the number of electrons involved in three-center
bonding (3c-2e vs 3c-4e bonds).

1. Introduction

Although the majority of simple molecules are satisfactorily
represented by a classical model of well-localized two-center
two-electron (2c-2e) bonds, there are also a lot of examples
where this simple model is inadequate. An example in this
respect could be the electron deficient molecules like boranes
or carboranes, metal atom clusters, etc., for which the existence
of three-center two-electron (3c-2e) bonds was proposed.1-6

Although the existence of three-center bonds can frequently be
predicted on the basis of the so-called Lipscomb rules,7,8 the
problem frequently is that in some cases it may be quite difficult
to decide where these bonds are to be localized in a molecule.
Such a situation was encountered for example in several
carboranes where the question was whether the three-center
bonds involve BCB or CBC fragments.9,10 Even if these
problems can sometimes be solved using various localization
schemes,1 the need was felt still more urgently to have a
procedure which could localize the three-center bonds in a
molecule directly. These criteria seem to be satisfied by a
recently proposed approach based on the use of the so-called
multicenter bond indices.12-20 These indices were independently
proposed by several groups, and already the first examples have
shown that by using this approach, the three-center bonds can
be detected and localized.9,21 Although the multicenter bond
indices proposed by various groups were formally derived from
quite different assumptions, a closer inspection of their properties
demonstrates that they are in fact closely related. Our aim in
this study is to report a detailed study of the properties of various
types of multicenter bond indices and to propose a simple model
allowing the evaluation of the strength of three-center bonds as
well as to address an important problem of how many electrons
are involved in three-center bonding (three-center two-electron
(3c-2e) vs three-center four-electron (3c-4e) bonding).

2. Theory

2.1. Closed Shell Systems.The three-center bond indices
were first proposed by Gaimbiagi12 and independently also by
Sannigrahi and Kar.14 According to their proposal, the three-

center bond indices were heuristically defined as a triatomic
term,

resulting from the partitioning of the expression

into mono-, bi-, and triatomic contributions. Analogously,
z-center bond indices14 were then related to the partitioning of
the product

Independently from this approach one of us (R.P.) has recently
proposed a new alternative procedure of introducing the
multicenter bond indices based on the formalism of the so-called
pair population analysis.22 Although the philosophy of this
analysis is thoroughly described in the original study, we
consider it worthwhile to recapitulate briefly the basic ideas of
this approach to the extent necessary for the purpose of this
study.
The (spinless) pair density, which is the basic quantity of

this approach, is defined as a diagonal element of the second-
order density matrix by

in which the integration is over the spin coordinates of first
two electrons and over the spin and space coordinates of
remaining (N-2) electrons. This pair density can straightfor-
wardly be expressed in the form of the expansion 5 in the basis

of atomic orbitals and where the pair density itself is represented
by the four-index matrixΩ. At the level of SCF approximationX Abstract published inAdVance ACS Abstracts,February 1, 1997.
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which is of our concern here, the matrixΩ can be expressed in
terms of usual charge density bond order matrixP:

Although the population analysis schemes were proposed
already for this orbital-based expansion (5),23,24 we preferred
in our approach to expand the pair density (4) in the basis of
two-electron functions, the so-called geminals:

The advantage of this geminal expansion is that the pair density
is now represented in terms of the normal two-index matrixΓ,
which is much simpler to work with. The population analysis
can thus be introduced in a direct analogy with normal Mulliken
population analysis.25 While the parallel with the Mulliken
population analysis manifests itself in that only mono- and
biatomic pair populations result from the expansion 7, there is
also one important difference. This difference arises from the
fact that the matrixΓ in expansion 7 is block diagonal, with
one block corresponding to singlet and the other to triplet states
of the electron pair.

Because of this, it is possible to introduce the individual singlet
and triplet pair populations, and the resulting formulas are given
in eqs 9-12.

These populations in whichP andS denote the normal first-
order density matrix and the overlap matrix, respectively, satisfy
the natural normalization condition

which requires the pair density to be normalized to the total
number of pairs.
In a previous study22 we have demonstrated that instead of

these individual singlet and triplet pair populations, which are
difficult to interpret, it is useful to introduce the so-called
effective pair populations, which are defined as

As can easily be demonstrated, these indices are in fact
equivalent to the so-called Wiberg indices,26 which are closely
related to classical bond multiplicities.

On the basis of this interpretation of effective pair populations,
we attempted to generalize the formalism of the pair population
analysis so as to be applicable also to more complex bonding
situations with multicenter bonds, etc. The straightforward
possibility of such a generalization is to analyze, instead of the
pair density itself, its square since in this case also the three-
and four-center terms can appear. Consistent with this phi-
losophy, the so-called nonlinear pair population analysis was
recently proposed.15 In this analysis, the individual contributions
were derived from the partitioning of the term 17 into mono-,
bi-, tri-, and tetratomic contributions.

(ΣRâ is the overlap integral in the geminal basis.)

Parallel to what was observed for linear pair population analysis,
we found it useful to introduce the effective pair populations
also for nonlinear analysis.

In keeping with the expectations, the nonlinear effective pair
populations∆eff are indeed able to detect the presence of
multicenter bonding, and several examples of such a detection
can be found in a recent study.21 The three-center bonds were
in all cases detected by the presence of a nonvanishing three-
center term∆ABC. Although the above introduction of the
nonlinear effective pair populations does not seem to exhibit
any relation to previously introduced multicenter bond indices,
such a relation does exist. As it is possible to show, the effective
pair populations∆eff defined by eqs 19-22 are identical with
mono-, bi-, tri-, and tetratomic components resulting from the
decomposition of the term

which is, except for the normalizing factor 1/16, equivalent to
(3) for the specific case of the four-center bond index. This
normalization which we propose to include in the original
definition12,14of multicenter bond indices has the advantage of
allowing the direct comparison of multicenter bond indices of
different rank. This comparability arises from scaling the
identity 3, from which the generalz-center bond indices are
derived, by a factor 1/2z, owing to which the identity 3 becomes
normalized to the universal quantityN/2 irrespective of the value
of z. Adopting this normalization, both types of multicenter
bond indices are completely equivalent, irrespective of quite
different underlying philosophies. In this connection it is worth
noting the above mentioned relation of linear effective pair
populationsΠeff to Wiberg indices. In view of this parallel,
these indices can be regarded as two-center bond indices, and
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as such, they straightforwardly describe the structure of
molecules with well-localized 2c-2e bonds.27,28

Having demonstrated the close parallel between the multi-
center bond indices and the effective pair populationsΠeff and
∆eff, it is worth mentioning another useful property of these
quantities as a simple measure of the relative strength of
corresponding bonds. The simplest situation is with pair
populationsΠeff which, as a good measure of the bond order,
can be related via the so-called BEBO relationship29-31 to the
experimental bond energies. A bit more complex situation is,
however, with genuine multicenter bonds, where the relationship
analogous to the BEBO relation does not exist. To overcome
this drawback, we propose here a simple model in terms of
which it is possible to estimate the limiting value of three- or
multicenter bond indices for ideal multicenter bonds. Because
of the fact that in our previous studies we have never seen a
case of a four-center bond, we confine our model to the simple
case of a three-center bond only. For this purpose let us consider
a simple three-center three-orbital model32 proposed by one of
us (I.M.) some time ago. This model, originally proposed for
the description of 3c-2e bonds with the bonding topology Ia
(Scheme 1) and 3c-4e bonds with bonding topology Ib, was
further generalized to include also the case of 3c-4e bonds with
topology Ia and 3c-2e bonds with topology Ib.
The advantage of these models is that they can be solved

analytically, and such a solution straightforwardly demonstrates
that irrespective of actual bonding topologies (Ia vs Ib) the 3c-
2e bonds always giveIABC ) 0.1875, while the valueIABC )
-0.1875 results for 3c-4e bonds. Quite analogously, the
bonding topology Ic, characteristic, for example, of the H3

+ ion,
leads to the idealized valueIABC ) 0.2222 for 3c-2e bonds. In
connection with these models it is interesting to stress that the
values of analytically derived indices do not depend on the actual
values of overlap integrals between the interacting orbitals. This
implies that the calculated idealized limits can be regarded as

transferable from one case to another so that they can reasonably
well be applied to various bonding situations.
This result is important for two reasons. The first of them is

that it opens the possibility of estimating the relative strength
of three-center bonding by comparing the actual value ofIABC
in a particular case with the limiting values derived from the
above idealized models. The other important conclusion that
can be deduced from the analysis of three-center bond indices
concerns the evaluation of the number of electrons involved in
such bonding. Such an evaluation is based on the fact that the
three-center bond indices for 3c-2e and 3c-4e differ in sign.
While the positive values of three-center bond indices imply
the presence of a 3c-2e bond, the negative value can be regarded
as an indication of the presence of 3c-4e bonding. In this
connection is it fair to say that a similar interpretation of three-
center bond indices was heuristically proposed by Kar and
Marcos,33 but their interpretation was subsequently questioned
by Giambiagi.34 The results of our analytical model thus
provide independent support in favor of the original interpreta-
tion.
2.2. Open Shell Systems.Up to here all our considerations

concerned the multicenter bond indices for closed shell mol-
ecules. Since, however, the phenomenon of multicenter bonding
is not likely to be restricted to only closed shell species, it is of
interest to extend the formalism of multicenter bond indices to
the case of open shell species as well. The basis of this
generalization is our previous study16 in which we demonstrated
that three-center bond indices are closely related to the
decomposition of the quantity

into mono-, bi-, and triatomic contributions. If, now, the closed
shell expression for the nondiagonal element of first-order
density matrix

is replaced by an analogous open shell UHF equivalent

then simple algebra straightforwardly leads to the identity

whose decomposition into mono-, bi-, and triatomic contribu-
tions gives the desired three-center bond indices.

3. Results and Discussion

Having presented the theoretical background of our investiga-
tion of multicenter bond indices, let us proceed now to the
quantitative confrontation of our simple model with the actual
calculations. For this purpose we calculated the values of three-
center bond indices for several simple molecules with both 3c-
2e and 3c-4e bonds. The molecules studied involved the B2H6,
allyl cation, allyl anion, H3+, (FHF)-, and HNCO. In all cases
the molecular geometries were completely optimized at each
particular level. The calculations were performed both by the
semiempirical AM1 method35 and also at theab-initio SCF level
with basis sets ranging from minimal STO-3G to 6-31G* (for
cations and neutrals) or the even more flexible 6-31+G** (for
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anions). Theab-initio calculations were performed by Gaussian
92.36 In all cases the molecular geometries were completely
optimized at each particular level. The resulting values of three
center bond indices are summarized in Table 1.
Before starting the discussion of these data it is useful to

make a brief remark concerning the presumed basis set
dependence of resulting populations. Although it is true that
such a dependence can indeed be expected for any type of
Mulliken-like population analysis, the tests which we recently
performed for the closely related two-center bond indices37

suggest that such a dependence is in fact smaller than might
have been anticipated. We found, namely, that especially for
better basis sets the values of populations are more or less
converged to some final limiting values so that any further
improvement in the quality of the basis brings only unimportant
additional corrections. As a consequence, the negligible basis
set dependence provides a certain guarantee that the discussion
based on the values of multicenter bond indices will be
meaningful.
After this preliminary remark, let us attempt now to discuss

the values in Table 1. The simplest situation is for H3
+, allyl

cation, allyl anion, and B2H6, whose bonding topologies closely
correspond to idealized analytical models (Ic and Ia respec-
tively). As a consequence, the values of three-center bond
indices closely approach the limits derived from analytical
models irrespective of the method and basis set used. In this
respect the most typical situation is for H3+ ion, where both
semiempirical andab-initio indices are exactly equal to the
limiting value 0.222. This allows us to conclude that strong
and completely developed 3c-2e bonds exist in H3

+, allyl cation,
and B2H6, while a strong 3c-4e bond can be expected to exist
in allyl anion. A little bit more complex situation is the case
of the remaining molecules HNCO and, especially, FHF-, where
the sensitivity of the indices to the quality of the method used
starts to appear. This is especially true of FHF-, where the
values range from-0.150 for STO-3G basis set to-0.025 for
6-31+G** basis set. The reason for this enormous decrease is
not so far completely clear to us, but it is probable that it can
arise, at least in part, from the fact that the actual bonding
topology is in this case much more complex than that for which
the idealized limit was derived. Thus, for example, in addition
to a simple 3c-4eσ bond for which the model applies, one also
can imagine a counteractingπ contribution to three-center
bonding in this case. This could explain why the strong decrease
is observed specifically for the high-quality 6-31+G** basis,
where the polarization p orbitals on the hydrogen atom can be
involved inπ bonding, whereas for semiempirical or STO-3G
ab-initio methods, where these polarization functions are not
available, the resulting indices are quite close to idealized limits.
We can thus conclude that the multicenter bond indices can

be regarded as a new efficient means of detection and localiza-
tion of multicenter bonding in molecules, and we believe that
their systematic use can substantially contribute to the visualiza-
tion and better understanding of the structure of molecules with
complex bonding patterns. In addition to this, the proposed

simple three-center three-orbital model provides a good basis
for the qualitative understanding of the factors responsible for
the existence and the strength of three-center bonding in
molecules.
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TABLE 1: Comparison of AM1 and ab-Initio Calculated
Values of Three-Center Bond Indices for Several Simple
Molecules

molecule population AM1 STO-3G 6-31G*/6-31+G**

H3
+ HHH 0.222 0.222 0.222

allyl cation CCC 0.169 0.173 0.158
B2H6 BHbB 0.175 0.174 0.178
allyl anion CCC -0.170 -0.173 -0.193
FHF- FHF -0.119 -0.150 -0.025
HNCO NCO -0.240 -0.266 -0.176
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